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bstract

 new toughness test for ball-shaped specimens is presented. In analogy to the “Surface Crack in Flexure”-method the fracture toughness is
etermined by making a semi-elliptical surface crack with a Knoop indenter into the surface of the specimen. In our case the specimen is a notched
all with an indent opposite to the notch. The recently developed “Notched Ball Test” produces a well defined and almost uniaxial stress field.

The stress intensity factor of the crack in the notched ball is determined with FE methods in a parametric study in the practical range of the notch

eometries, crack shapes and other parameters. The results correlate well with established calculations based on the Newman–Raju model.

The new test is regarded as a component test for bearing balls and offers new possibilities for material selection and characterisation. An
xperimental evaluation on several ceramic materials will be presented in a consecutive paper.

 2011 Elsevier Ltd. All rights reserved.
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.  Introduction

Structural ceramics, especially silicon nitride (Si3N4), are
istinguished due to their special properties: low wear rates,
igh stiffness, low density, electrical insulation and high cor-
osion resistance. For this reason they are advantageous for
ighly loaded structural applications or when special proper-
ies (due to additional requirements) are needed. An important
pplication with a rapidly growing market are hybrid bearings
ceramic rolling elements and metal races), which are used for
igh operation speeds (e.g. racing), current generators (e.g. in
ind turbines) or in the chemical industry.1,2 Key elements of

he bearings are the ceramic rolling elements, which should have
o comply with highest requirements. But relevant standards for
he proper determination of the mechanical properties of roller

lements are missing.

Mechanical properties of ceramics depend to a large frac-
ion on their microstructure, which is strongly influenced by
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hed Ball Test

rocessing conditions. Therefore proper mechanical tests should
e made on specimens cut out of the components, or – even bet-
er – on components themselves. The strength depends on the
aw populations occurring in the component which are – in gen-
ral – different in the volume and at the surface. In roller bearing
pplications the highest tensile stresses occur at (and near) the
urface of the rolling elements and surface flaws are of outmost
ignificance for the strength of rolling elements. Therefore the
ighest loaded area in mechanical testing of bearing balls should
e situated at the surface of the balls.

These conditions are fulfilled in the case of the Notched Ball
est (NBT)3–6 for the strength measurement of balls, which has
ecently been developed by several of the authors. A slim notch
s cut into the equatorial plane of a sphere and the testing force
s applied on the poles perpendicular to the notch. In that way
n almost uniaxial tensile stress field is generated in the surface
ear area opposite the notch, which is used for the determination
f the strength of the Notched Ball (NB) specimen. Therefore
he NBT is very sensitive to surface flaws and relevant for deter-
ining the strength of ceramic balls. Note that a similar test,

he C-Sphere Test,7 was proposed earlier, where the notch is
ot slim but wide and must have a precise shape. The quality

f bearing balls is strongly related to a high toughness, which
hould also be measured at specimens cut out of the balls or
n the balls themselves. In industry toughness measurements on
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Fig. 1. Stress distribution of a notched ball (NB) specimen. The ball is loaded
in compression with the force F perpendicular to the notch. This causes tensile
stresses in the outer surface region of the ball opposite to the notch with a
maximum stress σNBT at position 1. WN is the notch width.
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son’s ratio ν, and which, in the parameter range used for tests,

Fig. 2. The stress field in the specimen depends on the ball diameter D, the
notch length LN, the notch width WN and the fillet radius RN of the notch. The
164 S. Strobl et al. / Journal of the Europe

earing balls are commonly made with indentation methods (i.e.
Indentation Fracture”-method8–12 due to their ease of use. It has
een recognised in the last years that the toughness values mea-
ured with indentation methods depend on the size and shape
f the plastic deformation zone around the indent, which may
ary from material to material. Therefore the resulting “Inden-
ation Fracture Resistance” (IFR) is only a rough estimate of
racture toughness and has to be calibrated for each material
nd indentation load.

Standardised fracture toughness testing methods normally
se standard beams, which contain a well defined crack and
hich are loaded and broken in 4-point bending. The fracture

oughness KC is determined by application of the Irwin failure
riterion: K  = KC, where K  is the stress intensity factor (SIF).
ote that K  and KC mean pure Mode I configuration (i.e. crack
pening). In the following the authors disclaim to use indices
ecause the other loading Modes are not discussed. The critical
tress intensity factor can be determined using the fracture load
nd with information on beam and crack geometry.

A prominent example is the “Single Edge V-Notched Beam”
SEVNB) method,13 in which, a slim notch is introduced in a
ending beam using a razor blade. In that way straight notches
ith a tip radius of at least 3 �m can be produced. For materi-

ls having a mean grain size of several micrometers or greater,
his is an accurate approximation of a crack14,15 but for fine
rained materials sharper cracks would be beneficial for a precise
oughness measurement.

Very sharp cracks are used in the “Surface Crack in Flex-
re” (SCF) method.16,17 A Knoop hardness indent is made on
he tensile loaded side of a rectangular bending bar. Thus, an
lmost semi-elliptical and very sharp crack is introduced in the
urface. The size of the remaining Knoop crack is determined
y fractographic means, which may need some fractographic
xperience.

In comparison the SEVNB method is easier to apply and less
ime consuming but the SCF-method is more appropriate for

aterials with a very fine grain structure.
To measure the fracture toughness of ceramic balls, bending

ars can machined out of balls, if the balls have minimum diam-
ter, say 20–25 mm, but most of the produced rolling elements
re smaller. So a simple toughness test for ball shaped compo-
ents is needed. In this work we will focus on an extension of
he SCF method on NB specimens.

. The  SCF-method  applied  to  notched  ball  specimens

.1. The  Notched  Ball  Test  for  strength  measurement

Recently, the “Notched Ball Test” (NBT) was established at
he Institut für Struktur- und Funktionskeramik at Montanuni-
ersitaet Leoben to measure the strength of ceramic balls, see
ig. 1. With a commercial diamond disc, a notch is cut into the

quatorial plane of the ball (depth ca. 80% of the diameter) and
he load F  is applied at the poles (point 3) using a conventional
esting machine. Then the notch is squeezed together and high
ensile stresses occur in the surface region of the ball opposite to

d
r
b
a

dapted from [6].

he notch root (the maximum stress σNBT is located at position
, furthermore called peak stress).

The stress field in the NB only depends on the ball diameter
 (ball radius R), the notch length LN, the notch width WN, the
llet radius RN of the notch at the notch base, and on the Pois-
on’s ratio ν of the tested material. The geometric parameters
re defined in Figs. 1 and 2.

To generalize the results the definition of the following
imensionless geometric parameters is convenient: the relative
otch length λ = LN/D, the relative width of the notch ω  = WN/D,
he relative radius of the fillet of the notch base ρ  = RN/WN.

The peak stress σNBT can be calculated using Eq. (1), with h
s the ligament thickness and fN as dimensionless factor, which
epends on the relative notch geometry (λ, ω, ρ) and the Pois-
imensionless geometric parameters are the relative notch length λ = LN/D, the
elative width of the notch ω = WN/D, the relative radius of the fillet of the notch
ase ρ = RN/WN. In the equatorial plane remains a ligament having the shape of

 segment of a circle with the thickness h = D − LN.



an Ceramic Society 32 (2012) 1163–1173 1165

i
r

σ

t
s
i
t
u
b
t
f
a

m
f
h
a
i

2

c
r

K

K
f
o
i
t
F
o
m
g

w
g
S
i
t
u
p
t
m
w
u

s
a
h
g
b
t

Fig. 3. Schematic of a semi elliptical crack. The crack width 2c at the surface
and the crack depth a are indicated as well as the points A (ϕ = 90◦) and C
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s 0.4 ≤  fN ≤  1.5. A detailed analysis of fN for a wide range of
elative parameters can be found in.6

NBT =  fN × 6F

h2 with fN =  fN(λ,  ω,  ρ,  ν) (1)

The sample preparation is clearly specified and the geome-
ry measurement of the NB specimen is precisely feasible. The
imple testing setup minimizes measurement errors caused by
naccurate alignment. Because the loading point is far away from
he area, where the maximum tensile stress occurs (and which is
sed for strength testing), the result is only very little influenced
y the local contact situation (contact stresses). Furthermore fric-
ion is extremely reduced (in comparison to bending testing; here
riction may have a very strong impact on stress determination)
nd can be neglected for data evaluation.

In summary the NBT is a very precise and simple testing
ethod, which makes the characterisation of original ball sur-

aces possible. Up to now almost 1000 NB-tests on specimens
aving different diameters and relative notch geometries, and
re made from different materials have been successfully tested
n the laboratory of the authors.3–6,18

.2.  Basic  principles  and  fracture  toughness  determination

The common approach in fracture toughness testing for
eramic materials is based on the Griffith/Irwin fracture crite-
ion:

C ≥  K  =  σY
√

aπ.  (2)

C is the Mode I fracture toughness, K  is the stress intensity
actor, σ  is a reference stress in the uncracked specimen (e.g.
uter fibre stress for bending), a  is the size of the crack and Y
s a geometric factor, which is determined by the geometry of
he specimen, the crack shape and the course of the stress field.
or details see standard text books on fracture mechanics or
n mechanical properties of ceramics.19,20 Information on geo-
etric factors for typical loading cases and standard specimen

eometries can be found in literature.21

To apply this equation for fracture toughness determination, a
ell defined stress field, which contains a crack of well-known
eometry and size, is needed. In the case of the standardized
CF-method16,17,22,23 a surface crack is produced with a Knoop

ndent in a bending bar specimen. The indent causes plas-
ic deformation around the indented zone, which also causes
nknown internal stresses. They are relaxed by removing the
lastic deformed material by grinding-off a thin surface layer of
he specimen’s surface, in which the hardness impression was

ade. Then the specimen is loaded in four point bending, i.e. a
ell defined (known) stress field is applied. The load is increased
ntil fracture occurs.

After fracture the crack size is determined on the fracture
urface by fractographic means. It has a semi-elliptic shape. For

 material with the Poisson’s ratio ν  = 0.3 Newman and Raju24–26
ave developed a parameterized and generalized solution of the
eometric factor Y  of a semi-elliptic crack in the stress field of a
ent bar (thickness t and width 2b). It depends on the geometry of
he crack (crack width 2c, crack depth a), the bar’s cross-section

F
(
r

ϕ = 0◦), where the geometry factor Y can reach a maximum.

nd on the position at the crack front given by the angle ϕ, see
ig. 3. The geometric factor Y(a, t, b, c, ϕ) shows a maximum
ither in point A (deepest point of the crack) or in point C (crack
ront intersection with the specimen surface). In the following
hese special values of the geometric factor are called YA and
C. Tentatively YA > YC for shallow cracks (c  > a) and vice versa.
f course fracture is initiated at the position the largest stress

ntensity factor.
The SCF-method can be adopted for the loading situation

n a NB specimen. The stress distribution in the NB specimen
s well-known and similar to that in a conventional four point
ending bar, i.e. almost uniaxial. The Knoop indent is introduced
pposite to the notch, where the maximum stress occurs (posi-
ion 1), see Fig. 4. In the following, the plastically deformed
urface layer is ground off and the NB specimen is broken.
or the evaluation of fracture toughness, the stress field of the
B specimen after grinding-off the plastically deformed surface

ayer has to be determined. Then the geometric factor of a semi-
lliptical crack in that stress field has to be determined. Again
he crack size and geometry will be measured by fractographic
ig. 4. Illustration of notched ball (half model) with a semi-elliptical crack
white) and ground down to remove the plastic zone around the indent. The
emaining ligament thickness is (h′ = h − 	h).
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Fig. 5. Reference model of a ground-off notched ball specimen used for the
parametric study: (a) mesh overview and (b) stress distribution (σz) without
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Fig. 6. Stress profile along a path at the surface of the notched ball specimen
for the original ball and two different grinding depths α (calculated with FE
analysis for the reference model) in relative units. The ratio σ/σNBT is called
f . The edge of the ground surface for each case is indicated with arrows
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negligible. The relative stress at position 1′ as a function of α

and ν is plotted in Fig. 7. An interpolation function of fSigma
based on 320 calculation points was used for data evaluation.
rack (compare with Fig. 1). Stress values given in MPa for an applied load of
 = 1 N.

.3.  Stress  distribution  in  the  NB  specimen  due  to  material
emoval

As in the case of SCF measurements on bending bars, the
lastically deformed material in the surface of the ball around
he indent has to be removed. The thickness of the removed
urface layer (removal depth) is called 	h, or in relative units

 = 	h/R, see Fig. 4.
The stress distribution in the ground-off NB specimen has

een determined by a FE analysis which was performed in
NSYS 12.1/13.0. The quarter-model is shown in Fig. 5a and

t includes about 35,000–50,000 elements (hexahedral- and
etrahedron-shaped). In the region, where the crack will be
ocated (position 1′), the mesh is refined. A convergence study
ith an overall refinement of the mesh (i.e. half element size)

howed no significant change of the peak stress. The uncertain-
ies in the determination of the maximum tensile stress in the
B specimens are assumed to be less than 0.1% of its value.
If not specified elsewhere a reference model with the follow-

ng standard parameters is used for all further investigations:

 = 0.8, ω  = 0.15, ρ  = 0.25, ν  = 0.3, α  = 0.04, β  = 0.05 and γ  = 0.5,
here β  is the relative crack size (β  = a/R) and γ  represents the

rack shape (γ  = a/c). In Fig. 5b the stress field perpendicular

F
t
i

Sigma

position 2′). The maximum stress value in position 1 (position 1′, respectively)
ncreases significantly with α.

o the notch plane (σz) at the surface of the reference specimen
ithout crack and after grinding-off a surface layer is illustrated.
he stress distribution and its maximum changes due to material

emoval (compare with Fig. 1).
It is interesting to note, that by modest geometric changes

aused by the grinding-off material at the ball apex, the peak
tress at the ground surface (position 1′) increases significantly,
ee Fig. 6. For α  = 0.04 (the grinding depth is 4% of the ball
adius), the peak stress increases almost 25% and for α = 0.08
he stress rises strongly again.

In the following, stresses will be described in dimensionless
relative) units, i.e. they will be related to the maximum stress in

 perfect NB specimen: fSigma = (σ/σNBT). Consider that σNBT is
he first principal stress at position 1, see also Fig. 1. The relative
tress at position 1′ depends on the amount of removed material,
he Poisson’s ratio and the notch geometry.

Apart from the notch length, the notch geometry has a
arginal effect on fSigma, so that the influence of ρ  and ω  is
ig. 7. Relative first principal stress fSigma at the specimen’s surface opposite
he notch (position 1′) versus the relative removal α (main influence). Parameter
s the Poisson’s ratio ν.
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Table 1
Overview and considered parameter intervals for the realised parametric FE
study.

Dimensionless
parameter name

Symbol Lower
limit

Upper
limit

Number of
design points

Notch length λ  = LN/D 0.74 0.82 5
Notch width ω  = WN/D 0.10 0.15 2
Notch fillet radius ρ = RN/WN 0.25 0.40 2
Poisson’s ratio ν 0.15 0.35 5
Grinding depth α = 	h/R 0.02 0.05 4
Crack depth β = a/R 0.005 0.065 7
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rack aspect ratio γ = a/c 0.4 1 7

n interactive applet of the interpolation (regarding λ, ω, ρ,
 and α) can be found in27 and a fitting function is given in
ppendix A. The fitting error is less than 0.25%.
In the experimental practice, to avoid a strong influence of

easurement uncertainties, the grinding depth should be deep
nough to be outside the parameter range, where the influence
f grinding depth in stress is very pronounced. This is the case
or α  ≥  0.02 (see Fig. 7), which used to be the lower limit of our
arameter range. Furthermore α  should be smaller than 0.05 to
nsure an approximate linear course of fSigma (with respect to
he variation of all other notch parameters). Both bounds fit the
ractical feasibility for commercial bearing ball diameters.

.4. Numerical  determination  of  the  geometric  factor  Y

In Fig. 8 the stress field (σz) at the surface of the reference
pecimen, including a crack and after grinding-off, is illustrated.
or all crack sizes, the amount of the elements along the crack
ront and their alignment around the crack tip was equal. This
as performed with an all hexahedron-meshed cuboid (for mesh
etails see Fig. 8c).

In every case, the J-Integral method, singularity elements
long the crack front and a plain strain assumption (effec-
ive Young’s modulus E* = E/(1 −  ν2)) were deployed for the
etermination of the stress intensity, more precisely with the
ormulation K  = √

E∗ · J . Correlated to Eq. (2) the geometric
actor along the crack front can be expressed with the related K,
he crack opening stress (σz; calculated in the first loading step)
t position 1′ and the crack depth a  (Note: Y  always refers to the
rack depth a, see Eq. (2). This means that a not the crack width

 is taken as the typical defect size).
The geometric factor Y (see Eq. (2)) was determined in a

arameter study (about 20,000 FE runs). The results are used to
efine two interpolation functions for the geometric factor YA
nd YC, respectively. The parameter intervals given in Table 1 for
he parametric study have been considered in equidistant steps.

All assumed intervals are realistic in terms of the practical fea-
ibility, if the range of ball diameters is considered to be between

 and 20 mm. The parameter intervals for the notch geometry
re explained in6 (strength testing). The limits of the Poisson’s
atio were chosen concerning typical structural ceramics (sili-

on carbide: 0.16 and zirconia: 0.34). The limits of the crack
eometry parameter, β  and γ , are mainly designated through a
ualified indentation load (i.e. HK10).

s
r

ramic Society 32 (2012) 1163–1173 1167

To show the significance of each of the seven varied parame-
ers for the value of the geometric factor Y, the trends are shown
n Fig. 9. Only one of the seven parameters is varied in each
ubfigure, for the other six parameters, the values of the ref-
rence model were used. The standard crack shape is γ  = 0.5
ellipse with half axis ratio of 1/2) but for comparison also
he curves for a semicircular crack (γ  = 1) are also shown. In
ubfigure (a) the change of the geometric factor (YA and YC
espectively) with the notch length is illustrated. YA decreases
uch more than YC with the notch length, which is reason-

ble: As a first approximation the ligament is loaded in pure
ending. If the ligament h  gets thinner (i.e. due to a deeper
otch) and the crack size is constant the relative stress value
t the crack tip at the surface (point C), so YC is not influ-
nced. The relative stress value at the deepest point of the
rack (point A) decreases for bended specimens, hence, YA is
ffected.

The notch parameters ρ  and ω  have almost no effect on Y  (see
ubfigures (b) and (c)). Plot (d) shows the influence of the Pois-
on’s ratio ν. YA and YC shift clearly with ν  but in the opposite
irections.

The tendency of YA is decreasing (see plot (e)) for an increas-
ng amount of ground-off material (α).

The relative depth of the crack β  has a stronger influence
n the geometric factors YA and YC compared with the relative
otch length λ, but both parameters have the same tendencies;
ee plot (a) and (f). Note that the influence of the analysed param-
ters on YC is weak. Plot (g) shows the course of Y  in both
oints with respect to the crack shape (γ). For γ  →  0, YA tends
o the analytical value of 1.12 and YC tends to become zero.
oth facts reflect the analytical solutions for an edge through
rack.28 In summary, the main influences on the geometric fac-
or Y are (i) the crack shape (γ) and size (β) and (ii) the ligament
eometry (α  and λ) with respect to the observed parameter
ntervals.

An interactive applet for the geometric factors YA and YC
n a NB-specimen can be found in27 and a fitting function is
iven in Appendix B. The fits provide an error of less than
.5%.

Additionally, a semi-analytical approximation for the geo-
etric factor of a semi-elliptical surface crack in the ground
B-specimen based on the Newman–Raju formula is pointed
ut in Appendix C.

.5.  Data  evaluation

Summing it up, the fracture toughness KC is determined by
he stress value in the ground NB-specimen (σNBT ×  fSigma) at
racture, the typical crack size a  and the maximum of the geo-
etric factor Y  along the crack front, which is influenced by the

eometry of the crack and the ligament:

C =  σNBTfSigmaYMAX
√

aπ  (3)
For data evaluation, the established interpolation functions
hould always be used to avoid errors due to fitting of the FE
esults.
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ig. 8. Stress distribution (σz) of a ground-off notched ball specimen with cra
alculation the reference parameters have been used.

.  Discussion

.1.  The  precision  of  the  FE  model  and  the  mesh  quality

Due to the rising importance of fracture mechanics for proof
f safety in structural applications, many different approaches
or stress intensity factor (SIF) calculation have been developed.
ext to the direct method,29–32 fitting the stress distribution
ear the crack tip, three implemented methods are available
n the used FE tool ANSYS 13.0 for the linear elastic mate-
ial behaviour: the “J-Integral”,29,33,34 “Virtual Crack Closure
echnique” (VCCT)35–37 and “Crack Opening Displacement”
COD).29

To estimate the principle error of these methods the resulting
eometric factor Y  can be compared to the analytical solu-
ion for a fully embedded circular crack in an infinite body
Y = 2/π). A quarter model of a finite block (full edge length
0 mm ×  40 mm ×  40 mm) with about 80,000 elements (all hex-
hedral) and with an embedded crack loaded in Mode I (crack
adius a  = 1 mm) was used. The J-Integral method with quar-
er node collapsed crack tip elements (CTE) provides the best
ccuracy out of all tested methods (the error is less than
.01%). This statement can also be found in literature,29 so
his method was chosen for all investigation regarding the NB
pecimen.

Also a convergence study considering the level of mesh
efinement in the NB was carried out for three resulting val-
es: peak stress (position 1′) and the SIF’s KA and KC. The
nfluences of local mesh refinements of the crack front and the
est of the NB specimen have been observed and compared to
he reference model (see Table 1).
There is almost no effect of the crack front mesh refinement
n peak stress (first principle stress at position 1′). A global
efinement increases the peak stress slightly more (<0.05%).

s

m

) overview and (b) detail of the crack. (c) FE mesh around the crack. For this

The influence of mesh refinement on the SIF’s is more del-
cate. The SIF value at the centre of the crack (point A) is not
ensitive to crack front refinement. The value at the free surface
point C) is mesh dependent and is continuously decreasing with
efinement at the crack front, which is an artifact due to J-value
etermination.29

According to this situation the crack front meshing of the ref-
rence model seems to be qualified to provide accurate results
ithin an estimated error of 0.5% (note that the principles of

tress singularity near the crack tip was always presumed accord-
ng to Eq. (2), details are discussed below). The mesh refinement
part from the crack front has a negligible effect (∼0.05%) on
IF’s.

.2. Influence  of  the  Poisson’s  ratio  ν  on  the  geometric
actor

The dependence of the geometric factors Y  on the Pois-
on’s ratio ν  for small (β  = 0.005) and large (β  = 0.05) cracks
espectively (as determined in our FE analysis) is shown
n Fig. 10. Also shown are the solution of Newman and
aju which is only carried out for ν ∼  0.3. But for a pre-
ise determination of the geometric factor, the influence of
he Poisson’s ratio has also to be considered. (Note: own
E analysis of a rectangular beam under tension with a
emi-elliptical surface crack showed that the variation of ν

ndicates the same tendencies as plotted in Fig. 10 for the NB-
pecimen.)

.3. Deviations  of  the  crack  shape  from  the  semi-elliptical

hape

In our calculations (and also in the calculations of New-
an and Raju) it is assumed that the crack is “perfectly”
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Fig. 9. Parametric study of the influence of model parameters on the geometric factor Y (in each case for point A and point C) in the dimensionless reference model.
(a–c) Variation of the notch geometry (λ, ω, and ρ), (d) variation of the Poisson’s ratio ν, (e) variation of the removed material α and (f–g) variation of the crack
g

s
s
n
f
w
w
g
t
a

3

l
b
t

eometry β and γ .

emi-elliptically shaped. This assumption is also made in the
tandards for SCF toughness measurements. In reality, this is
ormally not the case. Even if the initial Knoop crack was per-
ectly semi-elliptical, grinding the surface layer of the crack
ill leave another contour. This case has been studied in,28

here – for worst case assumption – the differences in the

eometric factors are less than: ±4% in point A and less
han ±2% in point C for cracks having the same aspect ratio
/c.

l
t

.4.  Stress  singularity  at  the  free  surface

The maximum of the Y-values along the crack front is always
ocated either at point A or at point C (see Fig. 3) and never
etween them,22,23,25 so just those two distinguished points have
o be observed.
Generally at the free surface (at point C) the stress singu-
arity is not proportional to r−1/2 (with r  as the distance from
he crack tip) according to Fett,38 Hutar30,32 and de Matos.39
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Fig. 10. Comparison of the Y-solutions of the own FE analysis (NBT) and the
N
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the maximum tensile stress in a NB specimen without surface
ewman–Raju formula plotted versus the Poisson’s ratio ν for (a) small cracks
α = 0.5%) and (b) big cracks (α = 5%).

ore precisely, the K-concept is therefore not valid at point C
nd it can only be used as an approximate approach. This effect
s pronounced, if the crack intersects the surface perpendicular
φ ≈  90◦) and the Poisson’s ratio is unequal to zero (the Poisson’s
atio also influences the thickness of this boundary layer).

Therefore the ASTM standard for the SCF-method16

nstructs to use flat crack shapes with YA > YC, i.e. the maximum
f Y  should be positioned at point A. In practice, the easiest way
o realise this is to increase the grinding depth 	h. This has sev-
ral useful effects: the intersection angle φ  gets smaller and the
rack shape becomes flatter. The condition YA > YC is fulfilled
or flat crack shapes (the limit is at γ  = 0.6 ÷  0.8, which depends
n the crack size β).

On the other hand the ISO-standard for the SCF-method17

etermines that the greater one out of both Y-value should be
sed for fracture toughness calculation. For this, two conditions
ave to be considered: (1) the crack has to be nearly semi-
lliptical and (2) the datum has to be rejected, if YA < YC and
he fracture could be caused by preparation damage or corner
op-ins at the surface-point C.

. Concluding  remarks
The standardized SCF-method for fracture toughness mea-
urements on ceramics is modified and applied to a new

m
t
n

ramic Society 32 (2012) 1163–1173

pecimen type, the notched ball. Compared to the NBT strength
esting procedure, a modification of the geometry of the notched
all is necessary. Grinding-off the plastic zone produced by the
noop indentation changes the peak stress at the ball apex. A
imensionless stress correction factor was evaluated by numer-
cal analysis.

The geometry factor Y  was calculated for a wide range of
otch and crack geometries by FEA. These results are com-
ared with the Newman–Raju formula (generalized solution
sed in the standard SCF-method). An interpolation func-
ion of the new results takes the Poisson’s ratio into account,
hich is necessary for the characterisation of other structural

eramics.
If the crack aspect ratio is a/c  < 0.6, the notched ball speci-

en also favours crack instability at the deepest point (point A),
hich is a well defined situation in fracture mechanics, there-

ore flat surface cracks should be aimed. With typical indentation
rack sizes (that can be achieved for advanced ceramics) the new
ethod may be applied to balls with diameters between 2 mm

nd 20 mm.
In the second part of the paper, which will be published

oon, the experimental procedure of the new fracture tough-
ess test are described in detail, measurement uncertainties are
iscussed and experimental results on silicon nitride balls are
resented. The results fit well to measurement results deter-
ined using other standard testing procedures on bending test

pecimens.

cknowledgements

Financial support by the Austrian Federal Government
in particular from the Bundesministerium für Verkehr, Inno-
ation und Technologie and the Bundesministerium für
irtschaft, Familie und Jugend) and the Styrian Provincial
overnment, represented by Österreichische Forschungs-

örderungsgesellschaft mbH and by Steirische Wirtschafts-
örderungsgesellschaft mbH, within the research activities of the
2 Competence Centre on “Integrated Research in Materials,
rocessing and Product Engineering”, operated by the Mate-
ials Center Leoben Forschung GmbH in the framework of the
ustrian COMET Competence Centre Programme, is gratefully

cknowledged.

ppendix  A.  Fit  function  for  the  maximum  tensile
tress in  the  NB  specimen  (at  position  1′)  after  material
emoval (an  interactive  applet  with  the  original
nterpolation  can  be  found  in  [27])

The results of the FEM-calculations were fitted to a polyno-
ial. It is intended to keep the fit function simple and that the

eviation of the fit function from the FE results should be less
han 1%. The stress is given in relative units (normalised with
aterial removal). The relative stress significantly depends on
he relative amount of material removed (α  = 	h/R), the relative
otch length (λ  = 1 −  h/(2R)) and on the Poisson’s ratio (ν). R  is
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Table A1
Coefficients for the fitting function for the stress factor (see Eq. (A.1)).

Indices Fit coefficients (with z0 = 1.07844)

a b c d

10 −0.591634 2.37305 2.8519 2.74222
11 2.6177 4.54232 2.65985 1.65029
12 −2.06407 −19.5959 −3.41503 4.938
20 −1.39017 3.50268 −8.0687 9.59176
21 4.62443 6.77471 −9.46501 6.54502
22 −3.41374 −44.9503 11.1753 24.7514
30 3.08148 8.73812 20.9244 10.3407
31 −7.41486 17.1121 23.2816 3.63325
3
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A fitting function of the equivalent thickness h – based at

T
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1
1
1
2
2
2
3
3
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2 4.803 −164.037 −24.6965 18.151

he radius of the ball. The influences of the relative notch width
nd of the relative notch fillet radius are weak.

The general fit function for fSigma is given in Eq. (A.1) and
he needed coefficients in Table A1. The fitting error is less than
.25%.

fSigma(λ,  ω,  ρ,  ν,  α) =  z0 +  α(a10 +  a11λ  +  a12λ
2)

×(b10 +  b11ω  +  b12ω
2)(c10 +  c11ρ  +  c12ρ

2)

×(d10 +  d11ν  +  d12ν
2) +  α2(a20 +  a21λ  +  a22λ

2)

×(b20 +  b21ω  +  b22ω
2)(c20 +  c21ρ  +  c22ρ

2)

×(d20 +  d21ν  +  d22ν
2) +  α3(a30 +  a31λ  +  a32λ

2)

×(b30 +  b31ω  +  b30ω
2)(c30 +  c31ρ  +  c32ρ

2)

×(d30 +  d31ν  +  d32ν
2) (A.1)

ppendix B.  Fit  function  of  the  geometric  factor  Y  in
he ground  NB-specimen  (an  interactive  applet  with  the
riginal interpolation  can  be  found  in  [27])

The numerical values of the geometric factor YA and YC can
e fitted in terms of the parameters λ, ν, α, β  and γ . The influence
f the notch parameters ω  and ρ  is negligible (consider Fig. 9);

he reference values were used. The general fitting function –
or YA and YC – is shown in Eq. (B.1). The needed coefficients
re given in Table B1 The fitting error is less than 1.5% in point

o

i

able B1
oefficients for the fitting function for the geometric factor (see Eq. (B.1)).

ndices Point A (with z0 = 1.259) 

a b c d 

0 −1.16634 0.84972 0.482606 1.23491 

1 0.0191434 1.97075 28.3316 −3.02365 

2 0.208143 −7.32415 −113.135 2.21254 

0 0.128234 1.33431 1.77848 1.18249 

1 −0.0209168 −1.41052 −11.5363 −10.7237 

2 −0.153399 8.01953 64.7578 7.67749 

0 0.355241 3.16874 −1.3068 0.0796565 

1 −0.217446 −2.99067 5.18989 −0.66641 

2 −0.94953 17.7899 −29.3815 0.454138 
ramic Society 32 (2012) 1163–1173 1171

 and less than 1% in point A.

Y (λ, ω  =  0.12,  ρ =  0.25,  ν,  α,  β,  γ)

= z0 +  γ0.2(a10 +  a11λ  +  a12λ
2)(b10 +  b11ν  +  b12ν

2)

×(c10 +  c11β  +  c12β
2)(d10 +  d11α +  d12α

2)

+γ(a20 +  a21λ  +  a22λ
2)(b20 +  b21ν  +  b22ν

2)

×(c20 +  c21β  +  c22β
2)(d20 +  d21α +  d22α

2)

+γ2(a30 +  a31λ  +  a32λ
2)(b30 +  b31ν  +  b32ν

2)

×(c30 +  c31β  +  c32β
2)(d30 +  d31α +  d32α

2) (B.1)

ppendix C.  A  semi-analytical  approximation  for  the
eometric  factor  of  a  semi-elliptical  surface  crack  in  the
round NB-specimen

More than 30 years ago Newman and Raju have derived an
pproximation for the geometric factor of a semi-elliptical sur-
ace crack in a bended rectangular bar. This solution is used for
ata evaluation in the standard SCF-method. The geometric fac-
or of a semi-elliptical surface crack in the NB specimen having

 ground surface can also be found – in a semi-analytical approx-
mation – using the Newman and Raju solution. In the ligament
f the ground NB specimen the course of the first principal stress

 perpendicular to the surface – is almost linear decreasing (see
ig. C1). In other words the stress field is very similar to that
f a bended rectangular bar. Therefore it is possible to define a
ending bar, which has the same slope of the stress field as the
round NB specimen. The thickness of the bar is heq and, for
implicity, the half width b  is defined to be b  = heq (see Fig. C1).

The equivalent beam thickness heq depends on the liga-
ent geometry (mainly on α  and λ) and the crack depth

. The stress distribution is nearly linear in the relevant
egion, i.e. over typical ranges of the crack depth a (for

 ≤  a  ≤  0.25h′).

eq

ur FE results – is given in Eq. (C.1)–(C.3).
The relations have been derived by computing the stresses

n the ligament of the actual (ground) notched ball specimen in

Point C (with z0 = −1.46387)

a b c d

1.30137 1.3381 0.785785 2.27784
−0.0735881 0.315134 −0.0836458 −0.0569606
−0.364722 −3.18661 1.64754 0.0292848

0.632871 0.983236 −0.247442 5.72478
−0.259051 1.25891 −0.511638 2.34767
−0.161234 −12.3825 1.13783 −1.71875

3.05859 −0.0162337 −1.20701 −1.53108
−3.10434 −0.0538943 −14.9341 11.5755

2.0719 0.577001 84.2279 −8.59851
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ig. C1. The stress field in a bended beam of thickness heq and of width 2heq is a
here high stresses occur).

rack depth direction x(or ξ  = x/h′) for several ball-notch config-
rations. For further information see.18,40

eq =  fhh
′ (C.1)

ith

h = −2a/h′

σz,Lig(ξ  =  a/h′) −  1
(C.2)
nd

z,Lig =  1 +  (m0λ  +  m1λ
2)n0ξ  +  (m2λ  +  m3λ

2)n1ξ
2 (C.3a)

ig. C2. Comparison of the geometric factors determined by FE-calculations
nd by a semi analytical approach based on the Newman–Raju formula, plotted
re values of the factor versus the crack shape γ for (a) small cracks (β = 0 5%)
nd (b) big cracks (β = 5%).
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 equal to that of the stress field in a ground NB specimen (at least at the surface,

ith

m0 = −2.54721 m1 = 2.17406 m2 = 5.63419 m3 = −6.07159

n0 = 3.93603 n1 = 3.00221
(C.3b)

Due to the modification discussed above and the approx-
mations of the Newman and Raju, the determination of the
eometric factor of a semi-elliptical crack in a ground NB spec-
men has an unknown uncertainty. Newman and Raju claim that
heir fitting function provided has a maximum error of ±5%
ccording to their FE results.25 In addition, they specified their
E accuracy with ±3% compared to the analytical solution in

erms of a completely embedded circular crack.24,26 All their
alculations have been made for a Poisson’s ratio of ν  = 0.3. A
irect comparison of the Newman and Raju formula and with
wn FE analysis for a semi-elliptical surface crack in a rectan-
ular beam under pure tension showed an error of less than ±3%
or ν  = 0.3.

For the NB model, a comparison of the Y-courses of our (very
ccurate) NBT-FE analysis with the approximations based on the
ewman and Raju formula is shown in Fig. C2 (Note: all of our
EM values outside of 0.4 ≤  γ  ≤  1 are extrapolated). For relative
mall crack sizes (β  = 0.005, see Fig. C2a) both solutions agree
urprisingly well; the maximum deviation is less than ±1.2%.
or bigger cracks (β  = 0.05, see Fig. C2b) the maximum error
or YA rises up to 2.9%, but for YC the difference between both
olutions is still less than 1% for all analysed crack sizes. Gen-
rally, the agreement of the FE-results with the approximations
ased on the Newman and Raju formula and their tendencies
s good but the agreement decreases with bigger relative crack
izes.

In general the semi-analytical calculations of Newman and
aju give the same trend with the crack shape as our FE calcu-

ations but they are only valid for ν  = 0.3. Our FE-solution can
e used in the range of Poisson’s ratio of interest (see Table 1).
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